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The PDF Projection Theorem and the
Class-Specific Method

Paul M. Baggenstoss, Member, IEEE

Abstract—In this paper, we present the theoretical foundation
for optimal classification using class-specific features and provide
examples of its use. A new probability density function (PDF) pro-
jection theorem makes it possible to project probability density
functions from a low-dimensional feature space back to the raw
data space. An -ary classifier is constructed by estimating the
PDFs of class-specific features, then transforming each PDF back
to the raw data space where they can be fairly compared. Although
statistical sufficiency is not a requirement, the classifier thus con-
structed will become equivalent to the optimal Bayes classifier if
the features meet sufficiency requirements individually for each
class. This classifier is completely modular and avoids the dimen-
sionality curse associated with large complex problems. By recur-
sive application of the projection theorem, it is possible to analyze
complex signal processing chains. We apply the method to feature
sets including linear functions of independent random variables,
cepstrum, and MEL cepstrum. In addition, we demonstrate how
it is possible to automate the feature and model selection process
by direct comparison of log-likelihood values on the common raw
data domain.

Index Terms—Bayesian classification, class-dependent features,
classification, class-specific features, hidden Markov models, max-
imum likelihood estimation, pattern classification, PDF estimation,
probability density function.

I. INTRODUCTION

A. Overview and Outline

I N this paper, we introduce a theorem that can be applied to
any statistical approach, which makes use of likelihood com-

parisons, such as detection, classification, and statistical mod-
eling. The theorem allows likelihood comparisons to be made
in the common raw data domain while the difficult task of prob-
ability density function (PDF) estimation can be made in class
(or state) dependent low-dimensional feature spaces. Because
each feature set can be designed without regard to other classes
(or states), it can be of much lower dimension than a common
feature set that must account for all classes, effectively avoiding
the curse of dimensionality. The transformation of feature PDFs
to the raw data domain, which we term “PDF projection,” is
accomplished by deriving a correction term that amounts to a
generalized Jacobian of the feature transformation. This correc-
tion term depends only upon the feature transformation and a
hand-picked class (or state) dependent statistical reference hy-
pothesis. When combined with the feature likelihood value, it
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results in a raw data likelihood function which is guaranteed by
the theorem to be a PDF on the raw data space. Examples of the
method involving commonly used autoregressive and cepstrum
features are provided.

A few words about the chronology of development are in
order. This paper is based on previous work in class-specific
features by the author and by Prof. S. Kay at the University of
Rhode Island. The first two papers on the subject [1], [2] de-
scribe the original form of the class-specific method, which was
based on a common fixed reference hypothesis and the proper-
ties of sufficient statistics. Although the present method is based
on this previous work, we say little about it in this paper. This is
because the present work is best understood from the viewpoint
of PDF projection, and it would confuse the readers to begin
with sufficient statistics. The interested reader is encouraged to
examine this previous work, especially [2].

In Section I, we review classical Bayesian classification and
discuss the dimensionality problem. In Section II, we introduce
the PDF projection theorem (PPT) and the associated chain rule.
In Section III, we discuss various methods of calculating the
PPT correction term. In Section IV, we discuss how to apply the
PPT to classification. In Section V, we apply the method to fea-
ture transformations involving linear functions of independent
random variables (RVs). In Section VI, we apply the method
to cepstrum and MEL cepstrum. In Section VII, we present a
method of automatic feature selection.

B. Classical Classification Theory and the Dimensionality
Problem

The so-called -ary classification problem is that of as-
signing a multidimensional sample of data to one
of classes. The statistical hypothesis that classis true is
denoted by . The statistical characterization of

under each of the hypotheses is described completely by
the PDFs, which are written . Classical
theory as applied to the problem results in the so-called Bayes
classifier, which simplifies to the Neyman–Pearson rule for
equiprobable prior probabilities

(1)

Because this classifier attains the minimum probability of error
of all possible classifiers, it is the basis of most classifier de-
signs. Unfortunately, it does not provide simple solutions to the
dimensionality problem that arises when the PDFs are unknown
and must be estimated. The most common solution is to reduce
the dimension of the data by extraction of a small number of
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information-bearing features , then recasting the clas-
sification problem in terms of:

(2)

This leads to a fundamental tradeoff: whether to discard features
in an attempt to reduce the dimension to something manage-
able or to include them and suffer the problems associated with
estimating a PDF at high dimension. Unfortunately, there may
be no acceptable compromise. Virtually all methods which at-
tempt to find decision boundaries on a high-dimensional space
are subject to this tradeoff or “curse” of dimensionality. For this
reason, many researchers have explored the possibility of using
class-specific features [3]–[9].

The basic idea in using class-specific features is to extract
class-specific feature sets ,

where the dimension of each feature set is small, and then to
arrive at a decision rule based only upon functions of the lower
dimensional features. Unfortunately, the classifier modeled on
the Neyman–Pearson rule

(3)

is invalid because comparisons of densities on different feature
spaces are meaningless. One of the first approaches that comes
to mind is to computes for each class a likelihood ratio against
a common hypothesis composed of “all other classes.” While
this seems beneficial on the surface, there is no theoretical di-
mensionality reduction since for each likelihood ratio to be a
sufficient statistic, “all features” must be included when testing
each class against a hypothesis that includes “all other classes.”
A number of other approaches have emerged in recent years to
arrive at meaningful decision rules. Each method makes a strong
assumption (such as that the classes fall into linear subspaces)
that limits the applicability of the method or else usesad hoc
method of combining the likelihoods of the various feature sets.

1) A method used in speech recognition [3] uses phone-spe-
cific features. While, at first, this method appears to use
class-specific features, it is actually using the same fea-
tures extracted from the raw data but applyoing different
models to the time evolution of these features.

2) A method of image recognition [10] uses class-specific
features to detect various image “fragments.” The method
uses a nonprobabilistic means of combining fragments to
form an image.

3) A method has been proposed that tests all pairs of classes
[4]. To be exhaustive, this method has a complexity of

different tests and may be prohibitive for large
. A hierarchical approach has been proposed based on

a binary tree of tests [5]. Implementation of the binary
tree requires initial classification into meta-classes, which
is an approach that is suboptimal because it makes hard
decisions based on limited information.

4) Methods based on linear subspaces [6], [7] are popular be-
cause they use the powerful tool of linear subspace anal-
ysis. These methods can perform well in certain applica-
tions but are severely limited to problems where when the
classes are separable by linear processing.

5) Support vectors [8] are a relatively new approach that is
based on finding a linear decision function between every
pair of classes.

As evidenced by the various approaches, there is a strong moti-
vation for using class-specific features. Unfortunately, classical
theory as it stands requires operating in a common feature space
and fails to provide any guidance for a suitable class-specific ar-
chitecture. In this paper, we present an extension to the classical
theory that provides for an optimal architecture using class-spe-
cific features.

II. PDF PROJECTIONTHEOREM

It is well known how to write the PDF of from the PDF of
when the transformation is 1:1. This is the change of variables

theorem from basic probability. Let , where is an
invertible and differentiable multidimensional transformation.
Then

(4)

where is the determinant of the Jacobian matrix of the
transformation

What we seek is a generalization of (4), which is valid for
many-to-1 transformations. Define

and

that is, is the set of PDFs , which, through ,
generate PDF on . If is many-to-one, will
contain more than one member. Therefore, it is impossible to
uniquely determine from and . We can, how-
ever, find a particular solution if we constrain . In order to
apply the constraint, it is necessary to make use of a reference
hypothesis for which we know the PDF of both and . If
we constrain such that for every transform pair we
have

(5)

or that the likelihood ratio (with respect to ) is the same in
both the raw data and feature domains, we arrive at a satisfac-
tory answer. We cannot offer a justification for this constraint
other than it is a means of arriving at an answer; however, we
will soon show that this constraint produces desirable proper-
ties. The particular form of is uniquely defined by the
constraint itself, namely

where (6)

Theorem 1 states that not only is a PDF but that it is a
member of .

Theorem 1—PDF Projection Theorem:Let be some
fixed reference hypothesis with known PDF . Let
be the region of support of . In other words, is the
set of all points , where . Let be a
many-to-one transformation. Let be the image of under
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the transformation . Let the PDF of when is drawn
from exist and be denoted by . It follows
that for all . Now, let be any PDF
with the same region of support. Then, the function (6) is a
PDF on , and thus

Furthermore, is a member of .
Proof: These assertions are proved in [11].

A. Usefulness and Optimality Conditions of the Theorem

The theorem shows that, provided we know the PDF under
some reference hypothesis at both the input and output of
transformation , if we are given an arbitrary PDF
defined on , we can immediately find a PDF defined
on that generates . Although it is interesting that
generates , there are an infinite number of them, and it is
not yet clear that is the best choice. However, suppose
we would like to use as an approximation to the PDF

. Let this approximation be

where (7)

From Theorem 1, we see that (7) is a PDF. Furthermore, if
is a sufficient statistic for versus , then as

, we have

This is immediately seen from the well-known property of the
likelihood ratio, which states that if is sufficient for
versus

(8)

Note that for a given , the choice of and are coupled
so that they must be chosenjointly. In addition, note that the suf-
ficiency condition is required for optimality, but is not necessary
for 7 to be a valid PDF. Here, we can see the importance of the
theorem. The theorem, in effect, provides a means of creating
PDF approximations on the high-dimensional input data space
without dimensionality penalty using low-dimensional feature
PDFs and provides a way to optimize the approximation by con-
trolling both the reference hypothesis as well as the features
themselves. This is the remarkable property of Theorem 1: that
the resulting function remains a PDF whether or not the features
are sufficient statistics. Since sufficiency means optimality of
the classifier, approximate sufficiency means PDF approxima-
tion and approximate optimality.

Theorem 1 allows maximum likelihood (ML) methods to be
used in the raw data space to optimize the accuracy of the ap-
proximation over and as well as . Let be pa-
rameterized by the parameter. Then, the maximization

(7a)

is a valid ML approach and can be used for model selection (with
appropriate data cross-validation).

Example 1: In this simple example, we demonstrate the ap-
plicability of Theorem 1. We consider the case of independent
Gaussian RV’s and two hypotheses concerning the mean. Let

. Let the feature transformation be

where . Let under and
under , where is the expectation operator. Because
and are hypotheses concerning the mean of Gaussian RV’s
with fixed variance, is a sufficient statistic for the mean when

. The Gaussian PDF of under may be written

Under , will be Gaussian zero-mean with variance ,
and thus

We let be the Gaussian PDF

By the projection theorem

Thus

where we have made the substitution . It is clear
that the result is a Gaussian PDF with mean for

and for . Note also that it is a PDF,
regardless of (that is to say the sufficiency of). It is also
clear that the PDF generates the PDF . In addition,
note that if , then , as predicted by
the theory.
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B. Data-Dependent Reference Hypothesis

We now mention a useful property of (7). Let be aregion
of sufficiency(ROS) of , which is defined as a set of all hy-
potheses such that for every pair of hypotheses ,
we have

An ROS may be thought of as a family of PDFs traced out by the
parameters of a PDF, whereis a sufficient statistic for the pa-
rameters. The ROS may or may not be unique. For example, the
ROS for a sample mean statistic could be a family of Gaussian
PDFs with variance 1 traced out by the mean parameter. Another
ROS would be produced by a different variance. The “-func-
tion”

is independent of as long as remains within ROS .
Defining the ROS should in no way be interpreted as a suffi-

ciency requirement for. All statistics have an ROS that may
or may not include (it does only in the ideal case). Defining

is used only in determining the allowable range of reference
hypotheses when using a data-dependent reference hypothesis.

For example, let be the sample variance of. Let be
the hypothesis that is a set of independent identically dis-
tributed zero-mean Gaussian samples with variance. Clearly,
an ROS for is the set of all PDFs traced out by. We have

and, since is a random variable (scaled by )

It is easily verified that the contribution of is canceled in the
-function ratio.
Because is independent of , it is possible

to make a function of the data itself, changing it with each
input sample. In the example above, sinceis the sample vari-
ance, we could let the assumed variance underdepend on
according to .

However, if is independent of , one may
question what purpose does it serve to vary. The reason is
purely numerical. Note that in general, we do not have an ana-
lytic form for the -function but instead have separate numer-
ator and denominator terms. Often, computing
can pose some tricky numerical problems, particularly ifand
are in the tails of the respective PDFs. Therefore, our approach is
to position to maximize the numerator PDF (which simulta-
neously maximizes the denominator). Another reason to do this
is to allow PDF approximations to be used in the denominator
that are not valid in the tails, such as the central limit theorem
(CLT).

In our example, the maximum of the numerator clearly hap-
pens at because is the maximum likelihood estimator
of . We will explore the relationship of this method to asymp-
totic ML theory in a later section. To reflect the possible depen-
dence of on , we adopt the notation . Thus

where (9)

The existence of on the right side of the conditioning operator
is admittedly a very bad use of notation but is done for sim-

plicity. The meaning of can be understood using the following
imaginary situation. Imagine that we are handed a data sample

, and we evaluate (7) for a particular hypothesis .
Out of curiosity, we try it again for a different hypothesis of

. We find that no matter which we use, the
result is the same. We notice, however, that for anthat pro-
duces larger values of and , the re-
quirement for numerical accuracy is less stringent. It may re-
quire fewer terms in a polynomial expansion or else fewer bits
of numerical accuracy. Now, we are handed a new sample of,
but this time, having learned our lesson, we immediately choose
the that maximizes . If we do this every
time, we realize that is now a function of . The dependence,
however, carries no statistical meaning and only has a numerical
interpretation.

In many problems, is not easily found, and we must be
satisfied withapproximatesufficiency. In this case, there is a
weak dependence of upon . This dependence
is generally unpredictable unless, as we have suggested,
is always chosen to maximize the numerator PDF. Then, the
behavior of is somewhat predictable. Because the
numerator is always maximized, the result is a positive bias.
This positive bias is most notable when there is a good match to
the data, which is a desirable feature.

C. Asymptotic ML Theory as a Special Case of the PDF
Projection Theorem

We have stated that when we use a data-dependent refer-
ence hypothesis, we prefer to choose the reference hypothesis
such that the numerator of the-function is a maximum. Since
we often have parametric forms for the PDFs, this amounts to
finding the ML estimates of the parameters. If there are a small
number of features,all of the features are ML estimators for
parameters of the PDF, and there is sufficient data to guarantee
that the ML estimators fall in the asymptotic (large data) region,
then the data-dependent hypothesis approach is equivalent to an
existing approach based on classical asymptotic ML theory. We
will derive the well-known asymptotic result using (9).

Two well-known results from asymptotic theory [12] are the
following.

1) Subject to certain regularity conditions (large amount of
data, a PDF that depends on a finite number of parame-
ters and is differentiable, etc.), the PDF may be
approximated by

(10)
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where is an arbitrary value of the parameter,is the
maximum likelihood estimate (MLE) of, and is the
Fisher’s information matrix(FIM) [12]. The components
of the FIM for PDF parameters are given by

The approximation is valid only for in the vicinity of
the MLE (and the true value).

2) The MLE is approximately Gaussian with mean equal
to the true value and covariance equal to or

(11)
where is the dimension of . Note that we use in
evaluating the FIM in place of, which is unknown. This
is allowed because has a weak dependence on.
The approximation is valid only for in the vicinity of
the MLE.

To apply (9), takes the place of , and is the hy-
pothesis that is the true value of . We substitute (10) for

and (11) for . Under the stated con-
ditions, the exponential terms in approximations (10), and (11)
become 1. Using these approximations, we arrive at

(12)

which agrees with the PDF approximation from asymptotic
theory [13], [14].

To compare (9) and (12), we note that for both, there is an im-
plied sufficiency requirement for and , respectively. Specif-
ically, must remain in the ROS of, whereas must
be asymptotically sufficient for . However, (9) is more gen-
eral since (12) is valid only whenall of the features are ML
estimators and only holds asymptotically for large data records
with the implication that tends to Gaussian, whereas (9) has no
such implication. This is particularly important in upstream pro-
cessing, where there has not been significant data reduction, and
asymptotic results do not apply. Using (9), we can make simple
adjustments to the reference hypothesis to match the data better
and avoid the PDF tails (such as controlling variance), where we
are certain that we remain in the ROS of. As an aside, we note
that (7) with a fixed reference hypothesis is even more general
since there is no implied sufficiency requirement for.

D. Chain Rule

In many cases, it is difficult to derive the-function for an
entire processing chain. On the other hand, it may be quite easy
to do it for one stage of processing at a time. In this case, the
chain rule can be used to good advantage. The chain rule is just
the recursive application of the PDF projection theorem. For
example, consider a processing chain

(13)

Fig. 1. Required embedding of hypotheses for chain-rule processor
corresponding to (13) and (14). The conditionH 2 H is not necessary for a
valid PDF but is desirable for processor optimality.

The recursive use of (7) gives

(14)

where , , , and ,
, are reference hypotheses (possibly data-depen-

dent) suited to each stage in the processing chain. By defining
the -functions of each stage, we may write the above as

(15)

There is a special embedded relationship between the hy-
potheses. Let , , and be the ROSs of , , and
, respectively. Then, we have . If we use

variable reference hypotheses, we also must have ,
, and . This embedding of the

hypotheses is illustrated in Fig. 1. The condition
is the ideal situation and is not necessary to produce a valid
PDF. The factorization (14), together with the embedding of
the hypotheses, we call the chain-rule processor (CRP).

III. T YPES OF -FUNCTIONS

We now summarize the various methods we have discussed
for computing the -function.

A. Fixed Reference Hypothesis

For modules using a fixed reference hypothesis, care must
be taken in calculation of the-function because the data is
more often than not in the tails of the PDF. For fixed reference
hypotheses, the function is

(16)

The numerator density is usually of a simple form, so it is known
exactly. The denominator density must be known ex-
actly or approximated carefully so that it is accurate even in
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the far tails of the PDF. The saddlepoint approximation (SPA),
which was described in a recent publication [15], provides a so-
lution for cases when the exact PDF cannot be derived but the
exact moment-generating function (MGF) is known. The SPA
is known to be accurate in the far tails of the PDF [15].

Example 2: As a very simple example of a fixed-reference
module, let be a time-series, and letbe the power estimate

For being WGN, is quite simple to write, namely

(17)

Clearly, is a Chi-square RV with degrees of freedom scaled
by . Thus

(18)

B. Variable Reference Hypothesis Modules

For a variable reference hypotheses, thefunction is

(19)

Modules using a variable reference are usually designed to po-
sition the reference hypothesis at the peak of the denominator
PDF, which is approximated by the CLT.

Example 3: We can use the Example 2 and redesign the
module as a variable reference module. Now, instead of using
reference , we use the reference hypothesis that
has variance . Thus

(20)

Now, will still be Chi-square, but we can approximate its PDF
by the CLT. Accordingly, has mean and variance

. Thus

(21)

Notice the complete cancellation of the last term.
Let us compare the fixed hypothesis method (17) and (18)

with the variable hypothesis method (20) and (21) for the power
feature. We create input datafrom iid samples of Gaussian
noise but with a random scaling. The scale factor was chosen

from a uniform distribution in the [0,100] range. The following
results were produced.

function
Fixed ref Variable ref error

There is almost no difference between the approaches (a
0.000 16 error in log domain). The error rises asdecreases
because the CLT approximation worsens.

C. Maximum Likelihood Modules

A special case of the variable reference hypothesis approach
is the ML method, when is an MLE (see Section II-C)

To continue Examples 2 and 3, it is known that the ML estimator
for variance is the sample variance which has a Cramér–Rao
(CR) bound of . Applying (12), we get exactly
the same result as the above variable reference approach. When-
ever the feature is also a ML estimate and the asymptotic re-
sults apply (the number of estimated parameters is small and
the amount of data is large), the two methods are identical. The
variable reference hypothesis method is more general because
it does not need to rely on the CLT.

D. One-to-One Transformations

One-to-one transformations do not change the information
content of the data, but they are important for feature condi-
tioning prior to PDF estimation. Recall from Section II that
Theorem 1 is a generalization of the change-of-variables the-
orem for 1:1 transformations. Thus, for 1:1 transformations, the

-function reduces to the absolute value of the determinant of
the Jacobian matrix (4)

Our first example is the log transformation that is useful when
applied to exponential RVs to obtain a more “Gaussian-like”
distribution.

Example 4—Log Transformation:Let . We have
; thus, . For

vector arguments

A very important one-to-one transformation in signal pro-
cessing is the conversion from autocorrelation function (ACF)
to reflection coefficients (RCs) using the Levinson algorithm
[16]. RCs tend to be better features since they are less correlated
than ACF estimates.
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Fig. 2. Block diagram of a class-specific classifier.

Example 5—Conversion From ACF to RCs:Let ,
where and , where

are the RCs. The Jacobian is

Although the RCs are uncorrelated, they are subject to the
limit , which gives their distribution a discontinuity. To
obtain more Gaussian behavior, the log-bilinear transformation
is recommended (thanks to S. Kay).

Example 6—Log Bilinear Transformation:Let

We have

Additionally, taking the log of the first feature () results in
a further improvement.

IV. A PPLICATION OFTHEOREM 1 TO CLASSIFICATION

A. Classifier Architecture

Application of the PDF projection theorem to classification
is simply a matter of substituting (9) into (1). In other words,

we implement the classical Neyman–Pearson classifier but with
the class PDFs factored using the PDF projection theorem

at

(22)
where we have allowed for class-dependent, data-dependent,
reference hypotheses.

The chain-rule processor (14) is ideally suited to classifier
modularization. Fig. 2 is a block diagram of a class-specific clas-
sifier. The packaging of the feature calculation together with the

-function calculation is called the class-specific module. Each
arm of the classifier is composed of a series of modules called
a “chain.”

B. Feature Selectivity: Classifying Without Training

The -function and the feature PDF provide a factorization of
the raw data PDF into trained and untrained components. The
ability of the -function to provide a “peak” at the “correct”
feature set gives the classifier a measure of classification per-
formance without needing to train. In fact, it is not uncommon
that the -function dominates, eliminating the need to train at
all. This we call thefeature selectivity effect. For a fixed amount
of raw data, as the dimension of the feature set decreases, indi-
cating a larger rate of data compression, the effect of the-func-
tion compared with the effect of the feature PDF increases. An
example where the-function dominates is a bank of matched
filter for known signals in noise. If we regard the matched filters
as feature extractors and the matched filter outputs as scalar fea-
tures, it may be shown that this method is identical to comparing
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only the -functions. Let , where is a nor-
malized signal template such that . Then, under the
white (independent) Gaussian noise (WGN) assumption,is
distributed . It is straightforward to show that the-func-
tion is a monotonically increasing function of. Signal wave-
forms can be reliably classified using only the-function and
ignoring the PDF of under each hypothesis. The curse of di-
mensionality can be avoided if the dimension ofis small for
each . This possibility exists, even in complex problems, be-
cause is required only to have information sufficient to sepa-
rate class from a specially chosen reference hypothesis .

C. -Function Verification

One thing to keep in mind is that it is of utmost importance
that the -function is accurate because this will insure that the
resulting projected PDF is, in fact, a valid PDF. For example,
if the -function is accidentally scaled by a large positive con-
stant, the classifier will produce false classifications in favor the
the class with the erroneous-function. In contrast, it is not
a serious problem, however, if one of the likelihood functions

is not a perfect match to the data for classbecause
it will be discovered by trial and error. A better PDF estimate
can be found simply by comparing the likelihood values for
the given class. Therefore, in the following examples, we are
notvery strictabout the sufficiency of the features for the corre-
sponding target class, although their approximate sufficiency is
intuitively apparent. The ultimate justification for using a partic-
ular feature set can be the maximization of the likelihood values
calculated on the raw data space using

(23)

We can compare competing feature sets based on the likelihood
values and can gradually increase the likelihood on the target
class by experimenting with different features and PDF models.

To verify the “ ” function, we have developed an end-to-end
test that we call the “Acid Test” because of its foolproof nature.
To use the method, it is first necessary to define a fixed hypoth-
esis, which is denoted by , for which we can compute the
PDF readily and for which we can synthesize raw data.
Note that is nota reference hypothesis. The synthetic data is
converted into features, and the PDF is estimated from
the synthetic features (using a Gaussian Mixture PDF, HMM,
or any appropriate statistical model). Next, the theoretical PDF

is compared with the projected PDF

for each sample of synthetic data. The log-PDF values are
plotted on each axis, and the results should fall on the
line. For each example, we will provide acid test results. Since
the acid test checks the equality of two entirely different paths,
it should find any systematic error in PDF estimation or in the

-function calculation.

V. EXAMPLE: LINEAR FUNCTIONS OFEXPONENTIAL,
CHI-SQUARE, OR LOG-EXPONENTIAL RVS

A widely used combination of transformations in signal pro-
cessing is to first apply an orthogonal linear transformation, per-
form a squaring operation (or magnitude-squared for complex
RVs), and then perform a linear transformation. These transfor-
mations include widely used features such as MEL cepstrum
[17], polynomial fits to power series and power spectra, auto-
correlation functions and, through one-to-one transformations,
autoregressive (AR) and reflection coefficients (RC).

The general form is the following. Let be an -by-1 real
or complex vector. Let be some real or complex
orthogonal linear transformation such that . Note
that does not need to be square ifis real and is complex
since we omit any redundant elements of. Let be the length
of . For the case of DFT of a real vector, . Next,
let be the vector whose elements are the magnitude squared
(if complex) or squared (if real) values of the elements of

Finally, let

(24)

where is a real -by- matrix.

A. Two Approaches to Computing the-Function

For the features in (24), there is no closed-form solution to
the -function, except in some simple cases [15]. There are,
however, two very good approximations discussed in the next
sections. The second method (central limit theorem) will be used
in the subsequent example.

1) Saddlepoint Approximation Method:The saddlepoint ap-
proximation (SPA) was discussed in a previous publication [15];
therefore, we will only give an overview here. In the referenced
paper, the case of autocorrelation coefficients computed from
a real vector was discussed. The reference hypothesis used
for this approach, which is denoted by , is white (indepen-
dent) Gaussian noise of zero mean and variance 1. The numer-
ator PDF of the -function

(25)

is known exactly, and the denominator PDF is approximated by
the SPA. In extreme cases, this approach can potentially suffer
from the “tail PDF problem.”

To appreciate the tail PDF problem, one can imagine that for
a given sample , as we scale by a large positive number
so that when calculating , we will quickly reach
a point where the -function will be a ratio of two numbers that
are essentially zero and cannot be reliably computed. In prac-
tice, we find that if all calculations are made in the log-domain,
the - function is well-behaved for very large input values.
There are limits, however, and we find that the SPA, which is a
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recursive search for the saddlepoint itself, will eventually have
convergence problems. To alleviate this problem, we use a vari-
able reference hypothesis (see Section II-B). Letbe a rough
estimate of the variance of. Let be the hypothesis that the
input variance equals. Assuming and are in the ROS
of , (25) is theoretically independent of , and thus

However

where is the dimension of . Therefore

(26)

which provides a convenient way to normalizeprior to calcu-
lating the SPA.

2) CLT Method: The second method that gives us a work-
able solution is the CLT. We use the chain rule to separately an-
alyze the two stages: a) orthogonal transformation and squaring
and b) linear transformation. We will design a two-module chain
for a subset of the autocorrelation function (ACF) estimates. The
processing chain necessary to compute the ACF coefficients can
be broken down into two stages:

1) Compute , which are the magnitude-squared FFT bins.
2) Compute , which is a subset of the elements of IFFT,

which is the real part of the inverse FFT of.

B. Structure of the Examples

As explained previously, a class-specific classifier can be or-
ganized into “modules”. Each module consist of a feature trans-
formation and a -function calculation. The -function requires
the definition of a reference hypothesis and the calculation of the
numerator (input) and denominator (output) PDF. Accordingly,
we organize this example and those that follow into modules.
For each module, we explain the following.

1) Features and ROS. We describe the feature transforma-
tion and the ROS for the features (see Sec-
tion II-B). Ideally, the ROS, which is denoted by , in-
cludes the “target class” for which this feature set is
designed.

2) Reference Hypothesis. We define the reference hypoth-
esis used in the -function. Often, this hypothesis is
a data-dependent reference, which is written .

3) Input PDF . We define this as the numerator of the
function.

4) Output PDF. This is the denominator of the-function.
5) Test Results. When appropriate, we present results of the

“acid test” (Section IV-C).

C. Stage 1: DFT Magnitude-Squared

Stage 1 of the two-stage CLT approach is discussed here.

1) Features and Region of Sufficiency:Let be the length
vector of magnitude-squared bins of the DFT of.

where

The ROS of is quite broad, encompassing all Gaussian pro-
cesses with a power spectrum.

2) Reference Hypothesis:For our reference hypothesis for
this stage, we use , which is the standard normal density
(WGN hypothesis with unit variance).

3) Input PDF: We have

(27)

4) Output PDF: Note that under , is a set of indepen-
dent RVs. It is easily shown that , obey the density
with mean and variance 2 . In addition, obey
the or exponential density with mean and variance .
Thus

(28)

where

(29)
and

(30)

and is the mean of the elements of( ).

D. Stage 2: Linear Transformation

Stage 2 of the two-stage CLT approach is discussed here. In
stage 2, we apply a linear transformation to. We use ACF as
an example, but the basic method applies to any linear transfor-
mation.

1) Features and Region of Sufficiency:We let be the first
circular ACF samples

(31)

where is taken modulo- . We use the circular ACF esti-
mates in this example for simplicity because they may be written
in terms of , but the -function may be found for any variety
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of ACF estimate. The features (31) may be written in terms of
as follows:

(32)

This has a compact matrix notation

where is the ( )-by-( ) matrix defined by

(33)

(34)

Since is the ACF estimates of order, the approximate ROS
is all AR processes of order and less.

2) Reference Hypothesis:Because we intend to use the CLT
to approximate the -function denominator, we need to use a
variable reference hypothesis such that the mean of
under is equal to or close to itself. There are two pos-
sible methods. For arbitrary matrices, this can be done by
projecting the input vector upon the column space of. Let

be the hypothesis that has mean

(35)

Notice that , that is, under , the mean of is
itself.

One possible problem that can occur is if in (35) happens
to be negative, which is quite possible, but not allowed. A suit-
able solution is to use a constrained optimization, that is, choose

such that it is positive, and is as close as possible to.
A more satisfying way to guarantee a positivein the case

of ACF is the following. We let be the hypothesis that
obeys the AR spectrum corresponding to. Thus, we must use
the Levinson algorithm to solve for theth-order AR coeffi-
cients , . If is the DFT of (padded to length ), then

is the AR spectrum corresponding to. We let

(36)

For large , we have .
3) Input PDF: We need to evaluate and

. We assume { } are a set of independent expo-

nential and RVs with means corresponding to {}, which
are the elements of . Specifically

(37)

and

(38)

4) Output PDF: Because is “close” to , we approx-
imate by the central limit theorem (CLT). Under

, the elements of are independent with mean and di-
agonal covariance , which are defined by

.

We can then easily compute the mean and covariance of:

and

det

det

(39)

where in the last step, we make the approximation .
This approximation becomes better asbecomes larger. Note
also that the method just described is closely related to the ML
approach. In fact, is related to the Fisher’s information of
the ACF estimates [16].

E. Test Results

The acid test was run on the ACF features using both the SPA
and CLT methods. A model order of 2 was used giving a feature
dimension of 3 (lags 0 through 2). Results are shown in Figs. 3
and 4. A raw data size of was used with a test hypoth-
esis, of iid Gaussian noise of variance 100. There were 400
samples of synthetic data used for training the feature PDF using
a Gaussian mixture. The results show that both methods “pass”
the test because the estimates of projected PDF (vertical axis)
appear to track the theoretical PDF values (horizontal axis). The
errors are quite small, considering that these are PDF estimates
of a 32-dimensional PDF. A comparison was made of the dif-
ference of the log -function values output by the two methods,
and it was found that the difference was less than 1.0 for all sam-
ples.
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Fig. 3. Acid test results for autocorrelation function using SPA method. Top
frame shows the estimate of the feature log-PDF projected to the raw data plotted
against the theoretical log-PDF. The bottom frame shows the difference plotted
against the theoretical log-PDF. A Gaussian mixture was used to estimate the
feature PDF.

Fig. 4. Acid test results for autocorrelation function using CLT method. Top
frame shows the estimate of the feature log-PDF projected to the raw data plotted
against the theoretical log-PDF. The bottom frame shows the difference plotted
against the theoretical log-PDF. A Gaussian mixture was used to estimate the
feature PDF.

VI. EXAMPLE: CEPSTRUM ANDMEL CEPSTRUM

An important set of features in speech analysis is cepstrum
[18] and MEL cepstrum [17]. For the cepstrum, the SPA for the
denominator PDF of the -function for fixed WGN reference
hypothesis is described in [15], so we will not need to discuss it
further. The MEL cepstrum, however, is a member of the set of
transformations in Section V. The MEL cepstrum is computed
as follows. Let be a DFT magnitude-squared vector of length

, where is the DFT size. The MEL filter bank is a
matrix of spectral template vectors

where is a commonly used value. The MEL cepstrum
equals

DCT

where the log function operates on each element of its argu-
ment, and DCT is the discrete cosine transform. Note that DCT
and log are both 1:1 transformations, whose-functions are the
determinant of the respective Jacobian matrices. Our primary
concern, then, is to analyze the intermediate feature set

which we have previously described in Section V.
An important warning is that the usual MEL filter bank does

not include filters centered at the 0-th and (Nyquist) DFT
bins. These two filters need to be included in any class-specific
classifier; otherwise, will not be sufficient for simple scaling
operations. The proper way to eliminate the features is not to
exclude them from the MEL filterbank, but rather to assign a
noninformative (such as uniform) PDF to them at the output.

VII. FEATURE SELECTION

One question we have not yet covered is how does one deter-
mine an appropriate feature set for a data class? Choosing fea-
tures is rarely done through statistical or mathematical analysis.
The choice of features remains an art requiring intuition. This
intuition is is helped by the methods of resynthesis and model
order/segment size selection discussed below.

A. Sufficiency by Resynthesis

In many problems, the ability of a human to classify an event
exceeds the ability of the machine. Human performance is
almost always a lofty goal. It is therefore reasonable to choose
features that can represent the data with enough fidelity to
resynthesize the event to the satisfaction of a human observer.
For example, the resynthesis of speech data from features has
been used for speech analysis to determine the appropriateness
of speech analysis methods [19]. We recommend this method
whenever it is appropriate.

B. Determination of Segmentation and Model Order

Once a feature set is chosen, it may be possible to fine tune it.
This is particularly true if the feature extraction is governed by
a set of parameters such as segment size and model order. Full
implementation of (7a) may be computationally prohibitive un-
less a simplified PDF model is used. The method now presented
may be a way to automatically determine these parameters.

In many statistical models, there are two parts to the mod-
eling: measurement PDF and spatio-temporal distribution. For
example, in an HMM, the state PDFs are measurement PDFs
and the state transition matrix describes the spatio-temporal
component of the model. By removing the spatio-temporal part
of the model, a simplified model results (just a measurement
PDF). It may be possible to optimize the feature model order
and segmentation based only on the simplified model. The
optimized features, it is conjectured, would achieve the highest
likelihood once the spatio-temporal parts of the model were
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restored. We have conducted many experiments that support
this conjecture.

The particulars of the method are now presented. Let the fea-
ture data be written , where is a par-
ticular choice of segment size and/or model order andis
the corresponding total number of observation vectors corre-
sponding to choice. Note that we have collected all the avail-
able data from all events into one mass, forgetting the temporal
or spatial organization, and forgetting which event the obser-
vations are from. We also assume that are low enough in
dimension that a parametric PDF estimator (i.e., Gaussian mix-
ture) can be estimated from the data. Let the data be divided into
a training set ( , ) and testing set ( , ) for cross-val-
idation. Next, we estimate the PDF

using for model choice . The feature PDF is projected to
the input data space where it can be compared across different
values of . We have

where is the aggregate - -function for the data
set. Next, is calculated for ( , ). For added accuracy,

can also be computed by swapping and and aver-
aging. The optimal choice of is that which maximizes .

This approach is robust against overparameterization because
as the model order (and dimension of) increases above the
optimal value, the ability to estimate the PDF worsens and the
average of the cross-validated likelihood will begin to fall.

C. Example

To test the approach, we first created a synthetic signal class
approximating a “bang” sound. Independent Gaussian noise is
passed through a second-order autoregressive filter. The filter
output is modulated by an envelope function with an instanta-
neous attack and an exponential decay. The attack time is chosen
at random. Independent noise is added to the result. An example
of a typical synthetic event is shown in Fig. 5. A total of 100
events were created, each with a total length of 4096 samples.
The features were extracted by segmenting the events into seg-
ments of length , where ranged from 32 to 512 in powers of
2. Autocorrelation features of orderwere extracted from each
segment where was between 2 and 7. The results are shown
in Table I and show a peak at , , which is about a
10-ms segment size. This is in agreement with intuition because
the width of the event envelope near the peak is about 10 ms.

VIII. V ERSATILE GENERAL-PURPOSECLASS-SPECIFIC

TIME-SERIESCLASSIFIER USING REFLECTION COEFFICIENTS

AND HMM

It is possible to use the material thus-far discussed to arrive at
a fully modular, extremely versatile class-specific classifier. A
functional block-diagram of this classifier is provided in Fig. 6.

Fig. 5. Example of a typical synthetic event. Time-series (top) and
spectrogram (bottom). Sample rate was 12 500 Hz.

TABLE I
RESULTS OFMODEL ORDER/SEGMENT SIZE SELECTION EXPERIMENT. RESULTS

LOG-LIKELIHOODS RELATIVE TO MAXIMUM

A given time-series is processed by each class-model to ar-
rive at a raw-data log-likelihood for the class. Each block la-
beled “RC(P)” computes the reflection coefficients of order
from the associated time-series segment. The figure shows two
class-models employing different segmentation lengths as well
as different model orders. The log-correction terms ( -func-
tions) of all the segments are added together and the aggregate
correction term is added to the HMM log-likelihood (from the
forward procedure [20]) to arrive at the final raw data log-like-
lihood for the class.

Each “RC(P)” block is composed of a series of modules im-
plementing ACF calculation followed by conversion to RCs and
ending with feature conditioning by the log-bilinear transforma-
tion. This may be implemented four modules corresponding to
Sections V-C, V-D, and III-D (Examples 5 and 6). Alternatively,
the SPA approach (see Section V-A1) may be used in place of
the first two modules and will produce virtually identical fea-
tures and -function values. This classifier has the added benefit
that the models may be validated by re-synthesis of time-series
from features (either computed from actual data or generated at
random by the HMM). Using the method of Section VII-B, the
segmentation sizes and model orders may be optimized for each
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Fig. 6. Block diagram of an HMM and RC-based class-specific classifier. A given time-series is processed by each class-model to arrive at a raw-data
log-likelihood for the class. Each block labeled “RC(P)” computes theP th order reflection coefficients from the corresponding time-series segment and is
implemented by a series of modules.

class individually, eliminating the need to “compromise,” and,
because it is a class-specific classifier, features of any kind may
be used. Adding new class processors will not affect the existing
class processors or their training.

IX. CONCLUSIONS

We have introduced a powerful new theorem that opens up a
wide range of new statistical methods for signal processing, pa-
rameter estimation, and hypothesis testing. Instead of needing a
common feature space for likelihood comparisons, the theorem
allows likelihood comparisons to be made on a common raw
data space, while the difficult problem of PDF estimation can
be accomplished in separate feature spaces. We have discussed
the recursive application of the theorem which gives a hierar-
chical breakdown and allows processing streams to be analyzed
in stages. Whereas previous publications on the method have
relied on a common fixed reference hypothesis, this paper has
presented the use of class-dependent and data-dependent refer-
ence hypotheses and has explored the relationship to asymptotic
maximum likelihood theory. The use of a data-dependent refer-
ence hypothesis allows two new methods of analyzing the fea-
ture sets – maximum likelihood (ML) and central limit theorem
(CLT). These extensions significantly broaden the applicability
of the method. We have illustrated the use of the approach using
common feature types including autoregressive and MEL cep-
strum features. We have also presented a method of combined
feature/model order selection that is enabled by the class-spe-
cific approach. Finally, we have provided an example of a ver-
satile class-specific classifier using autoregressive features.
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